If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x^2=60
We move all terms to the left:
80x^2-(60)=0
a = 80; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·80·(-60)
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{3}}{2*80}=\frac{0-80\sqrt{3}}{160} =-\frac{80\sqrt{3}}{160} =-\frac{\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{3}}{2*80}=\frac{0+80\sqrt{3}}{160} =\frac{80\sqrt{3}}{160} =\frac{\sqrt{3}}{2} $
| 80x^2=40 | | 2x2-5x+4=0 | | 4x-3=25x= | | 5(4x+3)=-585 | | n/5=13/12 | | 5/n=13/12 | | 3+x/3=5 | | (4x+7)-((4x-1)=0 | | 4x+7)-((4x-1)=0 | | 3x=7-5x= | | 6(u-5)-9=-4(-6u+6)-6u | | -4x+40=-60 | | X/10=x+3/12 | | 9.4x=60.16 | | (3+2t)-(8+1)=2/t | | x^2-1000x+40=0 | | 3=z/7.3 | | 3.6x=2.052 | | 6n-17=8n-26 | | (6+x)-(8-2x)=0 | | x=4+2(10-4•6) | | 8x+7=-3+5x+16 | | 200-x=100 | | 4(x+4)-6=6x-2(-4+x) | | 457-x=222 | | b-18÷3=-10 | | 1/25=5x+4 | | -3y-15=5y+9 | | -x+15=x-13 | | 10x-24=6x-16 | | -4x-8=-6x-16 | | -4-5x=36 |